Урок № 40 Тема. Трикутник і його види.

Опис документу:
Урок № 40 Тема. Трикутник і його види. Мета: подальше закріплення знань учнями класифікації трикутників, доповнення їх алгоритмами побудови трикутників за двома сторонами і кутом між ними та за стороною і прилеглими кутами; формування вмінь розв'язування задач на побудову і вдосконалення вмінь розв'язувати за-дачі на обчислення периметрів прямокутника, квадрата і трикутника. Тип уроку: застосування знань, умінь, навичок. Автор Бабенко

Відображення документу є орієнтовним і призначене для ознайомлення із змістом, та може відрізнятися від вигляду завантаженого документу. Щоб завантажити документ, прогорніть сторінку до кінця

Перегляд
матеріалу
Отримати код Поділитися

Урок № 40

Тема. Трикутник і його види.

Мета: подальше закріплення знань учнями класифікації трикутників, доповнення їх алгоритмами побудови трикутників за двома сторонами і кутом між ними та за стороною і прилеглими кутами; формування вмінь розв'язування задач на побудову і вдосконалення вмінь розв'язувати за­дачі на обчислення периметрів прямокутника, квадрата і трикутника.

Тип уроку: застосування знань, умінь, навичок.

Хід уроку

І. Перевірка домашнього завдання

Запитання до класу

  1. Назвіть вид трикутника (рис. 69). [1) Різносторонній прямокутний; 2) різносторонній тупокутний; 3) рівнобедрений гострокутний трикутник.]

  2. Який вигляд має трикутник зі сторона­ми 14 см, 17 см і 17 см? Як скласти ви­раз для обчислення його периметра? [Рівнобедрений, основа — 14 см, бічна сторона— 17 см, Р = 217 + 14 = 48 (см).]

  3. І ст. — 12 (см)

ІІ ст. – 3 · 12(см)

III ст. – 3 · 12 – 8 (см)

Як описати словами залежність між сторонами трикутника?

Що являє собою значення виразу 12+3 12+(3 12-8)=76 (см)?

  1. Р = а + b + с

с = Р – (а + b) = Р – а – с

Знайдіть значення с, якщо Р = 9 см; а = 3 см; 6=4 см.

II. Доповнення знань

Мотивація навчальної діяльності

У ч и т є л ь. На попередньому уроці ми з'ясували, як можна класифіку­вати (поділяти на види) трикутники і інші об'єкти. Ми також навчились креслити трикутники певного виду (рівнобедрені, прямокутні тощо).

Як побудувати трикутник не просто певного виду, а щоб сторони мали певну довжину, а кути (кут) певну градусну міру?

Побудова трикутників

На цьому етапі доречно організувати роботу учнів з підручником. Після розбору прикладів 1 і 2 (с. 98-99) зробити такі самі побудови в зошитах. Записи в зошитах можуть мати такий вигляд:

Приклад 1

Приклад 2

A = 50°

АС = 4 см

АВ = 2 см

АВС— шуканий

АС = 8 см

A = 40°

B = 110°

АВС — шуканий

Після цього, проаналізувавши побудову, доходимо висновку, що:

  1. за двома сторонами і кутом між ними побудову трикутника викону­ють у такому порядку: будуємо кут; на його сторонах відкладаємо 2 відрізки відомої довжини;

  2. за стороною і двома прилеглими до неї кутами побудову трикутника ви­конують у такому порядку: будуємо сторону; від неї відкладаємо 2 кути.

III. Закріплення матеріалу

№ 376 (1-6). Побудова трикутників за двома сторонами і кутом між ними та за стороною і прилеглими до неї кутами.

№ 365. Побудова трикутника, вимірювання відрізків і кутів, обчис­лення периметра трикутника.

Додатково: № 430 — на обчислення периметра трикутника. № 378 — на розвиток просторової уяви учнів.

IV. Домашнє завдання

п. 14, № 377; 373; 367; повторити п. 10,392 (4) на розв'язування рівнянь.

2

Зверніть увагу, свідоцтва знаходяться в Вашому особистому кабінеті в розділі «Досягнення»

Курс:«Активізація творчого потенціалу вчителів шляхом використання ігрових форм організації учнів на уроці»
Черниш Олена Степанівна
36 годин
590 грн