і отримати безкоштовне
свідоцтво про публікацію
До визначення переможців залишилось:
3
Дня
3
Години
16
Хвилин
30
Секунд
Поспішайте взяти участь в акції «Методичний тиждень».
Головний приз 500грн + безкоштовний вебінар.
Взяти участь
  • Всеосвіта
  • Бібліотека
  • Методические рекомендации по организации учебно-воспитательного процесса в 6-х классах на уроках математики

Методические рекомендации по организации учебно-воспитательного процесса в 6-х классах на уроках математики

Курс:«Активізація творчого потенціалу вчителів шляхом використання ігрових форм організації учнів на уроці»
Черниш Олена Степанівна
36 годин
1800 грн
540 грн
Свідоцтво про публікацію матеріала №HT373745
За публікацію цієї методичної розробки Терстуях Світлана Іванівна отримав(ла) свідоцтво №HT373745
Завантажте Ваші авторські методичні розробки на сайт та миттєво отримайте персональне свідоцтво про публікацію від ЗМІ «Всеосвіта»
Бібліотека
матеріалів
Отримати код

Методические рекомендации по организации учебно-воспитательного процесса в 6-х классах на уроках математики

Подготовила:

учитель математики

Мангушской ОШ I-III ст. №2

Терстуях С.И.

Содержание

Введение

  1. Организация повторения в начале учебного года

  2. Проверка состояния знаний учащихся

  3. Способы активизации восприятия учащихся на уроке

  4. Организация самостоятельной работы учащихся

  5. Творческие работы по математике

  6. Виды самостоятельных работ по цели применения

  7. Работа с учебником

  8. Работа с дополнительной литературой

  9. Использование различных средств обучения

  10. Использование фактов из истории развития математики

Заключение

Введение

Эффективность методики обучения математике в средней школе напрямую зависит от оптимального решения проблемы формирования и развития самостоятельности, активности, творческого подхода, гибкости мышления учащихся. Особую значимость развитие самостоятельности приобретает в современных условиях, когда возрастает спрос на специалистов, способных к творческой деятельности, к нестандартному мышлению, умеющих ориентироваться во все возрастающем потоке информации и выбирать оптимальные способы решения возникающих перед ними вопросов и проблем. Поэтому первоочередной задачей школы на современном этапе становится качественная подготовка учащихся с упором на развитие у них умения самостоятельно добывать знания, оценивать их и применять в практической деятельности.

В решении этой задачи значительное место отводится школьному курсу математики, включающему арифметику, геометрию, алгебру.

Математика, в отличие от большинства других преподаваемых в школе дисциплин, имеет предметом своего изучения не непосредственно вещи, составляющие окружающий нас внешний мир, а количественные отношения и пространственные формы, свойственные этим веществам. Действительно, в любом вопросе науки или практики человеку приходится встречаться с различными объектами, изучать их свойства, наблюдать различные отношения между ними. Например, в географии такими объектами могут быть части света, свойствами - их природные условия, отношениями - взаимное расположение частей света. В математике отвлекаются от природы конкретных вещей - их называют просто элементами.

В последнее время, в связи с существенным расширением сферы приложений математики образовательная роль её стала пониматься шире. Человек, окончивший среднюю школу, должен владеть языком основных математических понятий, он должен в жизненной ситуации уметь выделять существенное, иметь развитую интуицию и, в то же время, обладать способностью к дедуктивным рассуждениям. Словом, этот человек должен иметь математическое развитие.

Для этого надо строить свою педагогическую работу на основе систематического и углубленного изучения трудностей, которые встречаются учащимся при усвоении программы.

1. Организация повторения в начале учебного года

Для выявления пробелов учащихся в VI классах в начале учебного года организуется проверка знаний по узловым вопросам курса начальной школы. У шестиклассников проверяются знания порядка действия, таблицы умножения, навыков внетабличного умножения и деления, сложение, вычитание многозначных чисел, нахождение неизвестной величины. Учитывая затруднения учащихся шестого класса, особенности первых разделов программы шестого класса, нужно первые уроки полностью посвятить умножению и делению чисел, повторению темы “Десятичные дроби”.

Повторение указанных тем должно быть организовано на основе внимательного изучения знаний, умений, навыков и направлено на устранение выявленных пробелов. Для того чтобы учитель в короткое время смог составить правильную картину уровня знаний учащихся, можно провести краткосрочные самостоятельные работы, тесты.

На основе анализа этих работ должны быть намечены конкретные меры по устранению пробелов с первых дней учебного года попутно с текущей работой на уроках или во внеурочное время. На уроках можно использовать тексты из материала обязательного уровня знаний, которые рассчитаны на среднего ученика.

2. Проверка состояния знаний учащихся

Проверка состояния знаний учащихся ведется регулярно в ходе всего учебного процесса. По своим целям контроль знаний учащихся делится на текущий, тематический и итоговый.

  • Целью текущей проверки является обеспечение оперативной обратной связи, позволяющей регулировать учебный процесс для обеспечения более полного и глубокого усвоения материала учащимся. Распространенными формами такой проверки являются устные вопросники, взаимообмен заданиями, самостоятельные работы, тесты и др.

  • Целью тематической проверки является выявление уровня знания материала в целом. Рассматриваются узловые вопросы темы. Форма проверки - тематическая контрольная работа или зачетные уроки в старших классах.

  • Целью итоговой проверки является выявление уровня знаний и умений за семестр, год, цикл классов. Такая проверка ежегодно проводится в форме диагностической контрольной работы в начале учебного года, итоговой контрольной работы в конце учебного года.

3.Способы активизации восприятия учащихся на уроке

Одним из условий успешной организации самостоятельной работы учеников на этапе изучения нового является активное восприятие, составляющее результат их активной мыслительной деятельности. Известно, что восприятие вызывается теми или иными намерениями, целями, интересами и, наряду с непосредственным отражением предмета, включает в себя осмысление впечатлений. Существует большое разнообразие приёмов, способов активизации восприятия обучаемых.

К ним относятся: раскрытие практического значения темы занятия, конкретизация цели предстоящего занятия, знакомство с планом изложения материала преподавателем; соблюдение преемственности в излагаемом новом материале; осуществление связи вновь изучаемого учебного материала с ранее пройденным; интересное, логическое, доходчивое изложение темы занятия преподавателем; постановка вопросов с целью проверки внимательности учащихся и сознательности понимания ими изучаемого; постановка проблемы; формулировка познавательных задач; связь с жизнью, и т.д.

Использование того или иного приёма, стимулирующего активное восприятие, будет результативным в том случае, если ученик работает над приобретением знаний без всякого принуждения, с большим интересом и охотой. Особая роль при этом отводится организации различных видов самостоятельной работы, подготавливающей обучаемых к более осмысленному сознательному усвоению нового, т.к. по-настоящему овладеть знаниями ученик может лишь в результате активной самостоятельной деятельности.

4. Организация самостоятельной работы учащихся

Результаты наблюдений, личного опыта показали, что организация самостоятельной деятельности учеников на этапе подготовки к получению новых знаний протекает более успешно при включении их в самостоятельную работу по воспроизведению ранее усвоенных знаний, умений, навыков, необходимых для активного восприятия нового учебного материала.

Объясняется это тем, что в процессе воспроизведения уже известного ему ученик не только слушает и наблюдает за работой своих товарищей, но и, самостоятельно производя различные логические операции, выполняя практические действия, вспоминая теорию, готовится к сознательному восприятию новой темы, раздела, курса.

Восприятие нового учебного материала будет наиболее полным, сознательным в том случае, если ученик будет в нём заинтересован. Наличие интереса при усвоении нового придает знаниям основательность, прочность, сознательность. Напротив, отсутствие интереса при усвоении знаний ведёт к тому, что знания усваиваются медленно, формально, не находят применения в жизни, быстро забываются.

К наиболее эффективным приёмам, средствам формирования самостоятельности мышления относятся: умение преподавателя задавать вопросы, направленные на самостоятельное осмысливание этих вопросов студентами; формирование у них собственной точки зрения, приёма противопоставления, взаимозависимости, сходства, различия и т.д., подводящих учащихся к выводам, обобщениям и содействующих развитию мышления, высокой умственной активности.

В условиях дифференциации обучения самостоятельная работа учащихся должна быть дифференцированной. Только при этом условии она будет эффективно способствовать интеллектуальному развитию обучаемых, полноценному формированию их знаний, умений и навыков.

Инструктируя учащихся перед выполнением самостоятельной работы и учитывая уровень их подготовленности при составлении заданий, учитель уже оказывает школьникам необходимую помощь.

С другой стороны, при организации отдельных видов самостоятельной работы не исключается, иногда и заведомо планируется взаимопомощь учащихся, а в некоторых случаях и объединение усилий обучаемых для ее выполнения. Также, самостоятельная работа может проходить и без наблюдения учителя, например, дома. Поэтому, не исключается возможность отнесения к самостоятельным работам выполнение учащимися домашних заданий.

В зависимости от перечисленных способов взаимодействия педагога и школьников, вся учебная работа подразделяется на работу под непосредственным руководством учителя, частично-самостоятельную и самостоятельную.

К классификации по степени самостоятельности относятся, например, виды самостоятельных работ

1. Воспроизводящие самостоятельные работы по образцу.

2. Реконструктивно-вариативные.

3. Эвристические.

4. Творческие (исследовательские).

При выполнении самостоятельных работ по образцу познавательная деятельность учеников направлена на овладение способами работы, основными умениями для последующего применения в практике, самостоятельного изучения других наук, областей. В познавательной деятельности ученика при обучении математике это могут быть различные упражнения по образцам и алгоритмам с целью формирования вычислительных навыков, решения простейших типовых задач, формирования умений познавательного и практического характера, составления таблиц, схем, построения элементарных чертежей.

Работы этого вида выполняются по жесткой схеме путем последовательных указаний на необходимость совершенствования строго определенного действия.

Работы по образцу позволяют усвоить учебный материал, но не обогащают учеников опытом познавательной творческой деятельности. Например, при построении угла, окружности, прямоугольника, треугольника ученику достаточно знаний о том, как это делается, и при выполнении работы он лишь воспроизводит эти знания в действии. Эти упражнения необходимы. Простейшие задачи на построение способствуют выработке умения пользоваться инструментами, выполнять те или иные построения.

Предпосылкой же развития математических способностей, накопления опыта творческой деятельности служит привлечение учащихся к выполнению более сложных видов деятельности.

В практике обучения математике классификация по степени самостоятельности нашла применение в виде работ по вариантам А, Б, В, Г, отличающимся друг от друга степенью сложности.

5. Творческие работы по математике

Известно, что творчество определяется прежде всего новизной и ценностью результата для общества.

Творческие работы при обучении математике — это такие, при выполнении которых ученик открывает новое для себя. Так, в поиске решения ученик достигает ответа другим способом, чем был ему показан.

К творческим работам по математике относят:

а) решение задачи и доказательство теоремы нестандартным, новым для ученика способом;

б) решение задач несколькими способами;

в) составление задач, примеров самими учениками;

г) математические сочинения;

д) доклады учащихся и другие виды деятельности.

Развитию творчества способствуют вариативные задания.

Вариативные задания содержат элементы творческой познавательной деятельности, требующей осуществления поиска, проявления более высокого уровня самостоятельности.

Примеры заданий, содержащих элементы творчества для учащихся 6 класса:

1. Вертолет преодолел расстояние между городами в 420 км при попутном ветре за 3 ч, а при встречном ветре за 4 ч.

Поставьте вопрос и решите задачу.

К этой задаче ученики могут поставить два вопроса:

1) Какова скорость ветра?

2) Чему равна собственная скорость вертолета?

Если к задаче поставлен второй вопрос, то решение может быть выполнено двумя способами.

2. Площади двух прямоугольников одинаковы. Длины сторон одного из них 16 и 9,6 см, а длина одной из сторон другого прямоугольника 12 см.

Поставьте вопрос и решите задачу.

Какие вопросы еще можно поставить к задаче?

Такая постановка заданий создает условия для размышления, анализа, самостоятельного установления связей между известными величинами (их отношениями), обобщения, что характерно для творческой деятельности при изучении математики.

Творческие задания могут быть длительными по времени. Одним из интересных видов творческой работы по математике в практике школы являются математические сочинения. Этот вид работы требует от учащихся:

а) знания дополнительной литературы;

б) умения обобщить прочитанный материал;

в) владения определенным художественным вкусом при оформлении работы и т. д.

Для учащихся VVI классов это могут быть небольшие сочинения, развивающие наблюдательность, кругозор.

Примерные темы сочинений для VVI классов

1. Простые числа.

2. Прямоугольники различного вида.

3. Где в жизни мы встречаемся с дробями?

4. Симметричные фигуры.

5. Длина окружности и площадь круга.

Очень интересны для этого возраста сочинения в форме сказок. Для старших классов могут быть следующие темы сочинений:

1. Уравнения.

2. Способы решения квадратных уравнений.

3. Симметрия вокруг нас.

4. Развитие числа.

5. Математика и музыка.

6. Математика и биология.

Темы для сочинений многообразны.

Математические сочинения — это творческая работа по определенной теме в течение длительного промежутка времени (1—2 месяца). После завершения работы сочинения сдаются в «библиотеку творческих работ», а отдельные ученики делают доклады на 5—7 мин.

Также учащиеся с удовольствием составляют ребусы, кроссворды, анаграммы, занимаются «геометрией на спичках», выполняют мозаичные картины из геометрических фигур.

Основой для оптимального усвоения математических знаний и математического развития, овладения опытом творческой деятельности является взаимосвязь воспроизводящих и творческих самостоятельных работ, преемственность в их выполнении.

6. Виды самостоятельных работ по цели применения

Самые разнообразные виды самостоятельных работ содержит классификация их по цели применения. Это могут быть самостоятельные работы:

а) с целью формирования математических понятий;

б) подготовительные упражнения к формированию понятия;

в) упражнения и задачи на закрепление нового материала;

г) тренировочные упражнения с целью формирования умений применять полученные знания при решении задач, примеров;

д) с целью выработки практических навыков построений при решении задач по геометрии.

При обучении математике применяются устные и самостоятельные письменные работы; классные и домашние; обще классные, групповые, фронтальные и индивидуальные.

Известны и другие классификации видов самостоятельной работы, например классификация по источнику знаний и методу:

а) работа с учебником;

б) работа со справочной литературой;

в) решение и составление задач;

г) учебные упражнения;

д) сочинения и описания;

е) задания по схемам, чертежам, графикам.

7. Работа с учебником

Активное самостоятельное познание возможно лишь для того ученика, который умеет работать с учебником (с книгой).

В целях подготовки учащихся к самообразованию важное значение приобретает задача вооружения их умением работать самостоятельно с книгой, и в первую очередь с учебником. Учебники математики содержат теоретический и практический материал. Печатный текст отличается от живого слова учителя. Текст учебника не учитывает различий, в уровне развития ученика, уровня его подготовленности.

Вместе с тем учебник как источник информации имеет ряд преимуществ. Наличие заголовков (глав, параграфов), шрифтовых выделений, чертежей, графиков облегчает ученику возможность видеть основные идеи.

Математический текст представляет особые трудности для понимания. Чтобы научить учеников работать с учебной математической книгой, учителю следует использовать обращение к математическому тексту (как прием в сочетании с другими видами самостоятельных работ), к выполнению практических упражнений в учебнике.

Поэтому важно учить уже с V класса умению понимать математический текст: анализировать, отвечать на вопросы, выделять основные части текста, формулировать к ним вопросы и т. д. В связи с этим в практике опытных учителей математики применяются, например, такие задания по работе с теоретическим материалом учебника:

а) работа с определением; чтение определения (такое задание предполагает последующее обсуждение определения понятия);

б) пересказ прочитанного по плану;

в) ответы на вопросы;

г) чтение текста, выделение главного в тексте;

д) чтение текста и составление плана;

е) составление таблиц, схем, графиков на основе материала, представленного в учебнике.

Задания по составлению плана развивают у учащихся аналитико-синтетическую деятельность, помогают видеть главное, помогают устанавливать связь между понятиями в тексте.

Материал дополнительных глав учебников математики учащиеся могут использовать при подготовке сообщений, докладов, рефератов. А исторические сведения, например, в VI классе - могут служить для написания изложений на темы: «Как возникла геометрия», «Как люди научились считать».

8. Работа с дополнительной литературой

Особого внимания требует от учителя организация самостоятельной работы учащихся при решении задач повышенной трудности, самостоятельной работы с дополнительной литературой.

С дополнительной литературой, но математике учащимся могут быть даны следующие задания:

а) выборочное чтение, наведение справок;

б) сопоставление знаний, полученных из источника, с усвоенными ранее;

в) ознакомление с новым методом решения задачи, доказательством теоремы;

г) расширение кругозора по теме: подготовка докладов, аннотаций статьи и др.

Важным в организации самостоятельной работы с научно-популярной математической литературой является правильный ее подбор.

Пропаганду математической книги, обучение приемам работы с книгой необходимо вести систематически в самых разнообразных формах с младших классов.

Значительное место в обучении учащихся математике занимают устные и самостоятельные письменные работы. Эти виды работы выступают в самых разнообразных сочетаниях.

Устный счет способствует формированию вычислительных навыков, развитию внимания учащихся, их инициативы.

Проведение самостоятельных устных работ помогает учителю организовать весь класс и создать в классе рабочую обстановку.

Опытные учителя применяют различные приемы организации устных и самостоятельных письменных работ.

Одной из составных частей учебного процесса является домашняя самостоятельная работа учащихся. В процессе выполнения домашнего задания учащиеся повторяют и закрепляют приобретенные на уроке знания, умения, навыки. Домашние работы воспитывают чувство ответственности, формируют навыки самообразования. Но при этом учителю математики необходимо каждый раз обращать внимание на объем домашней работы и не переносить центр тяжести в обучении математике на дом, как это часто бывает. Объем и характер домашних заданий определяется в каждом отдельном случае планом учебных занятий по разделу изучаемого материала. В зависимости от класса, содержания конкретного материала домашние задания даются по материалу урока или по теме программы.

По мере совершенствования урока необходимо повышать творческий характер домашней самостоятельной работы, индивидуализировать ее. Следует совершенствовать формы, в которых задается домашняя работа.

Как содержание работы, Так и приемы ее организации должны носить воспитывающий характер, способствовать развитию мышления учащихся.

В методической и дидактической литературе рассматриваются все указанные виды самостоятельных работ.

Успешное выполнение учащимися самостоятельной работы зависит от конкретных условий, в том числе от:

а) содержания материала;

б) уровня подготовленности учеников;

в) отношения учащихся к предмету;

г) дидактических приемов организации деятельности учащихся со стороны учителя.

9. Использование различных средств обучения

Опыт показывает на занятиях можно применять такие современные средства обучения, как предметные модели, электронные и печатные книги (на уроках - это прежде всего учебники), дидактические материалы с печатной основой и т.п., такие технические средства как кинопроекторы, интерактивные доски, компьютеры и другие обучающие устройства.

Преимущества использования таблиц, плакатов, других обучающих материалов перед “меловым” способом обучения, когда все графические изображения даются учителем на доске в ходе урока путем весьма нерационального использования учебного времени, по видимому, не нуждаются в подробном обосновании. Бесспорное здесь – прежде всего увеличение темпа изучения нового материала и значительное повышение эффективности совместной работы учителя и учащихся.

Многие учителя успешно используют на занятиях, во время лекции, конспект - таблицы основанные на системе В.Ф. Шаталова. В.Ф. Шаталов и его последователи используют в качестве конспектов листы опорных сигналов, составленные из нескольких блоков. Некоторые математические предложения в этих конспектах заменяются ключевыми словами или рисунками, вызывающими необходимые ассоциации только у тех, кто слушал объяснение. Приветствуя в целом идею опорных сигналов, отметим все же, что они, как и любые конспекты, сковывают инициативу учителя, ибо прежде всего отражают индивидуальность автора. Преподавание будет более эффективным и интересным, если учителя станут сами составлять краткие записи, отражающие основные этапы изложения нового.

10. Использование фактов из истории развития математики

Без использования исторического материала гораздо труднее подвести школьников к пониманию некоторых общих идей современной математической науки. Современная математика, к примеру, немыслима без символики, без использования знаков математической логики. Как показывает опыт, преподнесение учебного материала “в готовом виде” без описания затруднений, вызываемых отсутствием символики, т.е. без использования историко-генетического метода объяснения, не дает хорошего эффекта.

Историко-математические сведения хорошо запоминаются; запоминается, следовательно, история развития математики, формирование ее основных идей и методов.

Математика предстает перед школьниками не застывшей и сформировавшейся, а в творческом процессе создания, в динамике.

История науки позволяет учащимся увидеть ее движущие силы, наблюдать в действии взаимосвязь и взаимообусловленность научного познания и практической деятельности человека. Это способствует формированию диалектико-материалистического мировоззрения и научного мышления учащихся. Как показывает опыт работы в школе, имеется много возможностей использования историко-математического материала на факультативных занятиях. Элементы математической логики, приемы вычислительной математики и др., вообщем все разделы факультативного курса – можно и полезно изучать с привлечением историко-математического материала

Заключение

В качестве методических рекомендаций по организации уроков математики можно выделить следующее:

  • Взаимосвязь в содержании, формах и методах организации учебной работы и занятий;

  • Обеспечивать взаимосвязь (по содержанию) уроков и факультативных занятий;

  • Единство в содержании занятий различных разделов математики;

  • Активизация самостоятельной работы учащихся;

  • Построение учебного процесса как совместная исследовательская деятельность учащихся;

  • Использование наглядных пособий; применение конспект-таблиц на лекциях;

  • Использование системы ключевых задач по темам на факультативных занятиях;

  • Использование историко-математического материала на уроках;

  • Принципы занимательности занятий;

  • Построение занятий проблемного изучения материала.

Відображення документу є орієнтовним і призначене для ознайомлення із змістом, та може відрізнятися від вигляду завантаженого документу

  • Додано
    23.02.2018
  • Розділ
    Математика
  • Клас
    6 Клас
  • Тип
    Стаття
  • Переглядів
    7350
  • Коментарів
    0
  • Завантажень
    0
  • Номер матеріала
    HT373745
  • Вподобань
    0
Шкільна міжнародна дистанційна олімпіада «Всеосвiта Осінь – 2018»

Бажаєте дізнаватись більше цікавого?


Долучайтесь до спільноти