Відображення документу є орієнтовним і призначене для ознайомлення із змістом, та може відрізнятися від вигляду завантаженого документу. Щоб завантажити документ, прогорніть сторінку до кінця
Метод Жордана- Гауса
Метод Гауса — Жордана використовується для розв'язання систем лінійних алгебраїчних рівнянь, знаходження оберненої матриці, знаходження координат вектора у заданому базисі, відшукання рангу матриці. Метод є модифікацією методу Гауса. Названий на честь Гауса та німецького математика та геодезиста Вільгельма Йордана.
Алгоритм
Обирається перша зліва колонка, що містить хоч одне ненульове значення.
Якщо верхнє число у цій колонці - нуль, то обмінюється увесь перший рядок матриці з іншим рядком матриці, де у цій колонці нема нуля.
Усі елементи першого рядка діляться на верхній елемент обраної колонки.
Від рядків, що залишились, віднімається перший рядок, помножений на перший елемент відповідного рядка, з метою отримання нуля в першому елементі кожного рядка (крім першого).
Далі, повторюємо ці операції із матрицею, отриманою з початкової матриці після викреслювання першого рядка та першого стовпчика.
Після повторення операцій n-1 разів отримаємо верхню трикутну матрицю.
Віднімаємо від передостаннього рядка останній рядок, помножений на відповідний коефіцієнт, щоб у передостанньому рядку залишилась лише 1 на головній діагоналі.
Повторюємо попередній крок для наступних рядків. У результаті отримуємо одиничну матрицю і рішення на місці вільного вектора (над ним необхідно виконувати ті самі перетворення).
Зверніть увагу, свідоцтва знаходяться в Вашому особистому кабінеті в розділі «Досягнення»