Цікава математика у розв’язках і міркуваннях

Опис документу:
Даний матеріал стане у нагоді вчителям математики

Відображення документу є орієнтовним і призначене для ознайомлення із змістом, та може відрізнятися від вигляду завантаженого документу. Щоб завантажити документ, прогорніть сторінку до кінця

Перегляд
матеріалу
Отримати код Поділитися

Цікава математика

у розв’язках і міркуваннях

10 клас

. Задача 1.

Містер Сміт, зайшовши в магазинчик, промовив : “Ей, продавець, скільки ти хочеш за сім?”

- Двадцять центів, прошепотів зляканий торговець

- А за тридцять сім?

- Сорок центів.

- Добре, заверни мені двісті сімдесят два.

- З Вас шістдесят центів, містер.

Запитання, що купив Містер Сміт?

Задача 2. ОДТЧПШСВДД Що значать цей набір букв? Цю загадку учень 1-го класу вирішує за п’ять хвилин, старшокласник – за 15 хвилин, студент – за годину, професор – не вирішить ніколи. Що ховається за цими буквами?

Задача 3. Із гнізда вилетіло 3-и ластівки? Яка ймовірність того, що через 15 секунд вони будуть в одній площині?

Задача 4. Начальник цеха запросив на нараду декілька чоловік. Кожний член наради, входячи в кабінет, потиснув руку кожному з присутніх. Скільки було членів наради, якщо було зафіксовано 78 рукостискань.

За яких значень параметра a рівняння

має рівно три різних дійсних корені?

Відповідь:

Розв’язання. Рівняння можна переписати як , тому число x буде коренем цього рівняння тоді й лише тоді, коли , або — тобто і . Таким чином, рівняння матиме три різні корені тоді й тільки тоді, коли , причому і , тобто і

5. Нескінченна спадна геометрична прогресія має перший член m, знаменник , а сума її членів дорівнює 3. Знайдіть усі можливі пари за умови, що m та n — натуральні числа.

Відповідь:

Розв’язання. Оскільки сума членів геометричної прогресії, описаної в умові задачі, дорівнює , нам необхідно знайти всі натуральні m та n такі, що . Можемо записати:

Звідси, оскільки n — натуральне і не дорівнює 1, , а

6. У скільки способів можна розфарбувати всі 13 частин рис. 6 у три кольори так, щоб жодні дві частини, пофарбовані однаково, не мали спільної межі? Два розфарбування вважаються різними, якщо хоча б одна з 13 частин пофарбована по-різному.

Відповідь: 6.

Розв’язання. Центральну частину можна пофарбувати в один із трьох кольорів. Тоді всі 12 секторів доведеться фарбувати в інші два кольори, адже кожен із секторів має спільну межу із центральною частиною. Сектор 1 можна пофарбувати у довільний із двох кольорів, а кольори решти секторів встановлюються після цього автоматично: сектор 2 має бути пофарбовано в колір, відмінний від кольору центральної частини і сектора 1; сектор 3 повинен бути пофарбований у колір, відмінний від кольору центральної частини й сектора 2 і т. д. Легко бачити, що таке розфарбування справді задовольнятиме умову задачі, адже пара секторів 12 і 1 також буде розфарбована по-різному.

Отже, маємо варіантів розфарбування.

7. Доведіть, що для будь-яких дійсних чисел справджується нерівність:

Розв’язання. Щоб довести нерівність, можна розглянути випадки: всі можливі комбінації знаків виразів , та . Утім, можна зробити простіше — скористатися нерівністю , яка справджується для довільного дійсного числа a:

8 У чотирикутнику ABCD, що вписаний у коло, діагональ AC є бісектрисою кута DAB. На промені AD за точкою D вибрано точку E. Доведіть, що тоді й тільки тоді, коли

Розв’язання. AC — бісектриса, тому, як відомо, (рис. 7). Крім того, .

Якщо , то (за двома сторонами та кутом між ними), звідки .

Навпаки, якщо , то , звідки (за рівними кутами та парою сторін )

Задача 9. У три відра налито воду. Якщо чверть води з першого відра перелити до другого, а потім чверть води з другого перелити у третє, то в кожному відрі буде по 9 літрів води. Скільки літрів води було спочатку у третьому відрі.

Задача 10. Потяг проходить міст довжиною 450 метрів за 45 секунд. А повз будки стрілочника – за 15 секунд. Знайти довжину потяга та його швидкість.

Задача 11.Чому дорівнює об’єм кристала?

3

Зверніть увагу, свідоцтва знаходяться в Вашому особистому кабінеті в розділі «Досягнення»

Всеосвіта є суб’єктом підвищення кваліфікації.

Всі сертифікати за наші курси та вебінари можуть бути зараховані у підвищення кваліфікації.

Співпраця із закладами освіти.

Дізнатись більше про сертифікати.

Приклад завдання з олімпіади Українська мова. Спробуйте!
До ЗНО з МАТЕМАТИКИ залишилося:
0
1
міс.
2
0
дн.
2
0
год.
Готуйся до ЗНО разом із «Всеосвітою»!